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The derivation of a new vectorial bedload formulation for the transport of coarse 
sediment by fluid flow is presented in the first part of the paper. This relation has been 
developed for slopes up to the angle of repose both in the streamwise and transverse 
directions. The pressure distribution is assumed to be hydrostatic. The bed shear stress 
for the onset of particle motion and mean particle velocity are obtained from the mean 
force balance on a particle. A new generalized Bagnold hypothesis is introduced to 
calculate the sediment content of the bedload layer. The new formulation possesses two 
innovative features. It is fully nonlinear and vectorial in nature, in addition, it behaves 
smoothly up to the angle of repose. 

A mathematical model of the time evolution of straight river channels is presented 
in the second half of the paper. This study focuses on the evolution process due to bank 
erosion in the presence of bedload only. The bed and bank material is taken to be 
coarse, non-cohesive and uniform in size. The sediment continuity and the fluid 
momentum conservation equations describe the time evolution of the bed topography 
and flow field. These equations are coupled through the fluid shear stress acting on the 
bed. This bed shear stress distribution is predicted with the aid of a simple algebraic 
turbulent closure model. As regards the computation of the sediment flux, the new fully 
nonlinear vectorial formulation is found to perform well and renders the evolution 
model fully mechanistic. 

The formation of an erosional front in the time development of straight river 
channels has been so far obscured in physical experiments. Herein, with the help of the 
new bedload formulation, the existence and migration speed of the front of erosion are 
inferred from the analysis of the sediment continuity equation. 

The model successfully describes the time relaxation of an initially trapezoidal 
channel toward an equilibrium cross-sectional shape, as evidenced by comparison with 
experimental data. This equilibrium is characterized by a constant width, vanishing 
sediment transport in the transverse direction, and a small but non-vanishing 
streamwise transport rate of bed sediment. 

1. Introduction 
Under certain conditions the interaction of the flow and non-cohesive bed material 

results in the motion of sediment particles. Depending on the magnitude of the shear 
stress exerted by the flow on the bed and on the characteristics of the bed material, 
sediment can be transported in several different modes. The present study considers the 
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mode known as bedload transport, for which the particles remain in close proximity 
to the bed, sliding, rolling and saltating over it. Differential transport of sediment 
particles gives rise to a bed topography that changes in time. One example of this is the 
time evolution of straight river channels in non-cohesive material. The mathematical 
modelling of this problem is of great theoretical interest in the area of river mechanics. 
The relatively simple geometry makes the study of different fundamental physical 
relationships between sediment transport and fluid mechanics less difficult. In the 
present paper emphasis is placed on explaining the mechanics of bank erosion. In order 
to concentrate solely on this phenomenon further simplifications are made, e.g. the bed 
material is assumed to be uniform in size and the suspended sediment carried by the 
flow and the straight channel secondary currents are neglected. Understanding the 
process of bank erosion in this comparatively simple case provides a key to a better 
understanding of more complicated problems related to bank erosion, e.g. meandering 
and braiding. 

Theoretical models describing the motion of saltating grains under the influence of 
fluid flow are presented by Wiberg & Smith (1985), Anderson & Haff (1 988), Sekine & 
Kikkawa (1992) and Sekine & Parker (1992). These models estimate the relevant 
physical parameters associated with bedload transport from a Lagrangian description 
of the trajectories of saltating grains over a bed composed of similar particles. 
Although the saltation models are physically the most complete available, their 
application in practical calculations can be very cumbersome, and so far they have been 
developed for beds that are inclined only slightly relative to the horizontal. 

There is, however, a simpler mechanistic approach to the calculation of bedload 
transport. The details of motion of saltating grain are replaced by a bulk formulation 
based on the average grain velocity tangential to the bed surface. The effect of collision 
of saltating grains with the bed is replaced by a bulk dynamic coefficient of Coulomb 
friction. The motion of a particle placed on a laterally sloping bed is essentially 
determined by two forces acting on it, the drag force from the flow field and the 
downslope force of gravity. It can be expected that because of the lateral component 
of gravity the particle will not move parallel to the near-bed fluid velocity vector. The 
effect of transverse gravitational component is not in general linearly dependent on 
lateral bed slope. 

In the bulk formulations implemented to date (by e.g. Glover & Florey 1951; 
Engelund 1974; Engelund & Fredsoe 1976; Luque & van Beek 1976; Struiksma et al. 
1984; Parker & Andrews 1985; Ikeda 1989; Johannesson & Parker 1989), however, the 
assumption of small bed slope allows for simplification of the problem. These earlier 
formulae all include important elements of the mechanism of bedload transport. The 
assumptions and simplifications of the respective derivations make their applications 
restricted to cases where bed slope is low. For many problems of interest, this 
shortcoming does not necessarily impose severe limitations on the applications of the 
formulae. There is, however, another class of problems for which the ability to predict 
a vectorial bedload transport rate up to the angle of repose of the sediment is crucial. 
One such problem, that of bank erosion, is considered in the present paper. It was the 
failure of existing treatments of transverse bedload transport on side slopes to describe 
bank erosion that led to this analysis of bedload transport. 

The present bedload formulation represents an attempt to overcome the essential 
drawbacks of the available linear semi-empirical formulations, so as to adequately 
describe bedload transport on steep side slope near the water margin. The derivation 
of the new bedload model is based on a formulation presented independently by 
Ashida & Michiue (1972) and Engelund & Fredsoe (1976). Their formulation describes 
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FIGURE 1. Sketch of the time development of a straight river channel; erosion of the bank, 
deposition around the channel centre. 

the steady motion of the particle averaged over many saltations. In the present 
formulation the force balance equation for a particle placed on an arbitrarily sloping 
bed is not simplified with the consideration of low slope. The Bagnold hypothesis 
(1956), so far used for bedload transport on flat beds only, is herein generalized for any 
possible configuration. The nonlinear, fully vectorial, mechanistic formulation 
obtained here is thus able to cope with a far wider variety of problems in sediment 
transport than its predecessors. Without the new bedload model, the sediment 
transport process, by which straight channels evolve in time, can be simulated neither 
mechanistically on the entire erodible bed nor with any accuracy in time (Kovacs 
1992). 

The easiest way to visualize the time evolution of straight river channels is via the 
description of a laboratory experiment devoted to the study of channel widening 
through bank erosion. 

In the experiments by Ikeda (1981), by Diplas (1990) and by Izumi et al. (1991), a 
long straight flume was filled with coarse material of uniform size. These experiments 
modelled a half cross-section of a straight channel. The channel centre was replaced 
with a smooth Plexiglas or painted steel wall. This configuration acted to suppress 
meandering tendencies by lowering the width-depth ratio (e.g. Blondeaux & Seminara 
1985). The smoothness of the wall ensured that the flow field was influenced only 
within a very short distance from the surface, so that the wall can be considered as the 
axis of symmetry for a complete cross-section. 

The slope of the flume and the water discharge were set at the beginning and kept 
constant during each run. An initial half trapezoidal cross-sectional shape was 
moulded into the sediment, and the flow of water was begun. At the entrance to the 
flume, sediment was fed/recirculated to prevent degradation of the upstream reach. 
The interaction of fluid and sediment caused the cross-sectional shape to widen via 
bank erosion, thus evolving toward a dynamic equilibrium. This equilibrium state was 
reached when a static equilibrium (i.e. no sediment motion) became established on the 
bank region, while the central bed region was characterized by non-vanishing 
streamwise sediment transport. The evolution toward equilibrium is summarized in 
figure 1. 

The mathematical formulation of the time evolution of the flow field and bed 
topography is given by the unsteady sediment continuity equation (i.e. Exner equation) 
coupled with the unsteady fluid momentum equation (or a formulation yielding the 
local streamwise bed shear stress distribution for any given time and bed geometry). 
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FIGURE 2. 
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FIGURE 3. Sketch of the distribution of shear stress T~ and lateral bedslope tanw along the 
perimeter of a straight channel cross-section, during the development of a stable profile. 

One of the most important elements of the physics of the phenomenon in question 
is the fluid shear stress distribution on the bed, because this provides the link between 
the flow field and the bed geometry. The flow exerts shear stress T~ on the mobile bed, 
and the bed responds by changing its shape. The change in the bed geometry takes 
place through the motion of individual sediment particles. 

Figures 2, 3 and 4 illustrate the time history of the shear stress distribution on the 
bed in the case of an initially trapezoidal cross-section corresponding to the previously- 
described experiments. Comparing the fluid shear stress distribution 71, to the shear 
stress distribution critical for sediment motion roe, the initial cross-section can be 
divided into two regions, as shown in figure 2. The point on the bank which separates 
the two regions defines a front of erosion which begins migrating upslope, as shown on 



A new vectorial bedload formulation 157 

I 
I 
I 
I 
I i 
I i 

‘bc 

zh 

transport bedload onlj  

FIGURE 4. Shear stress distribution in a state of dynamic equilibrium. 
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FIGURE 5. Migration of the front of erosion upslope in the case of an 
initially trapezoidal cross-section. 

figure 5.  It is always (except at the initial time) a point of discontinuity in the lateral 
slope and inherently separates regions of vanishing and non-vanishing lateral sediment 
transport. In the present study a discontinuity analysis is used to determine the 
migration speed of a front of erosion. The front of erosion ceases to exist (i.e. does not 
migrate outward any more) when dynamic equilibrium is achieved, because the 
dynamic equilibrium is characterized by the absence of transverse bedload, as shown 
in figure 4. 

Early models of equilibrium channel shape in non-cohesive material, obtained by 
Glover & Florey (1951) and Lane, Lin & Liu (1959) use the so-called area method, 
which neglects the shear stress redistribution due to turbulent diffusion in the outer 
flow region, to compute boundary shear stress. The equilibrium state predicted by their 
work is characterized by vanishing bedload transport and a cross-sectional profile 
without a central mobile-bed region. These methods thus fail to predict equilibrium 
mobile-bed channels. Parker (1978 b) recognized the importance of turbulent diffusion 
in this regard. Applying the closure embodied in the modified area method of 
Lundgren & Jonsson (1964), he obtained a bed shear stress distribution, shown on 
figure 4, which allows a mobile bed to coexist with an immobile bank. 

6 FLM 261 
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A pioneering numerical simulation of this problem has recently been presented by 
Pizzuto (1990). He calculates the shear stress distribution on the bed from the modified 
area method of Lundgren & Jonsson (1964) and applied a sediment transport model 
which is linear in transverse bed slope. Substituting the lateral bedload relation into the 
Exner equation, Pizzuto (1 990) obtains a one-dimensional transient diffusion equation 
for bed elevation. As this bedload formulation becomes invalid for angles well below 
the angle of repose, the widening process must be artificially initiated with a heuristic 
failure model at the water margin. Wiele (1992) gives a comprehensive summary of 
previous methods to calculate bed shear stress distribution and bank erosion in a 
straight channel with non-cohesive sediment. Similarly to Pizzuto (1990), Schippa 
(1991) and Wiele (1992) apply a bedload formulation which is linear in lateral slope, 
and introduce as a sediment boundary condition at the bank top the lateral flux from 
the collapsed sediment edge. 

In the present study, the application of the new fully nonlinear vectorial bedload 
formulation allows the Exner equation to be classified as a transient advection- 
diffusion equation. At the front of erosion the Exner equation becomes a simple wave 
equation, and a line of weak discontinuity (i.e. a characteristic) appears in the solution. 
The proper form of the essential boundary condition for the sediment continuity 
equation is prescribed along the characteristic line of the front of erosion. 

It must be emphasized that the aim of the present work is to develop a mathematical 
model which is physically correct (both as regards the calculation of the shear stress 
and lateral bedload flux), fully mechanistic (in other words there are no heuristic parts 
in the description of the process) and contains a minimum of empirical parameters or 
constants. 

2. General vectorial bedload model in tensor invariant form 
The aim of this section is to compute the vectorial bedload transport rate at any 

point of a bed formed from non-cohesive granules of uniform size. In order to do this, 
the Ashida-Michiue (1992) relation for a horizontal bed is generalized to a fully 
vectorial bedload formulation for arbitrary bed shear stress vector and an arbitrarily 
sloping bed, up to the angle of repose. 

2.1. Geometry 
Let z =,fir) denote the vertical elevation of the bed surface; Y denotes the position 
vector, e.g. P = (x ,y )  in an (x,y,z)-rectangular Cartesian coordinate system. It is 
assumed in the present derivation that the surface is smooth and can be locally 
approximated by the corresponding infinitesimal tangent plane. It is further assumed 
that the radius of curvature of the bed surface is much larger than the average saltation 
length of a particle. As a result, bed surface curvature need not be taken into account 
in a consideration of bedload transport. 

Let ri denote the unit normal vector to the bed surface and - R  represent the unit 
downward vertical vector. The unit downward vertical vector -k can be decomposed 
into a component normal and a component tangential to the plane of the bed. These 
are defined as 

k, = - (k- f i ) f i ,  k ,  = -R+(k-fi)ri ,  (1 a, h) 

respectively. The bed slope is then expressed by 
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Bed surface 

FIGURE 6. Geometry for the new bedload formulation. 

where p denotes the bed slope angle. 
Suppose now that fluid is flowing over the bed and exerts a shear stress zb on the 

surface. By definition the shear stress is tangential to the bed surface, i.e. z,-S = 0. The 
unit vector tangent to the surface in the direction of the applied fluid shear stress is 
defined as follows ; 

The streamwise and lateral slopes of the bed tana and tanw can be obtained from 
the corresponding directional derivatives of the bed surface ; 

tana = ri;Vz, tanw = S,-Vz, 
respectively, where 

( f x $ ) x f .  c1 f x s  

l(f x s) x LI’ * (f x s( 
n, = n =-. 

Two special cases of interest are worth noting here. In the case of a bed sloping only 
in the streamwise direction, w = 0 and p = a.  In the case of a bed sloping only in the 
transverse direction, a = 0 and p = w. 

The unit tangent to the surface in the direction of the lateral slope is 

p̂ ’ ri,-ftanw 
lri, - f tan 01 

The bed configuration and the above defined unit vectors are shown in figure 6. Note 
that in general ŝ  and p^ are not orthogonal to each other. 

6-2 
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2.2. Stress and velocity 

It is assumed here that the flow is fully turbulent, and that there exists a fully rough 
turbulent inner layer near the surface of the bed. The bedload layer, an effective layer 
where the particles can be in motion, is located within this inner layer, extending only 
a few grain diameters above the bed. The representative bed shear stress zb is given 
within the inner layer, at the top of the bedload layer. The effective near-bed flow 
velocity ub (an ensemble mean fluid velocity) is assumed to be parallel to zb (see e.g. 
Engelund & Skovgaard 1973), and is evaluated by means of the rough logarithmic law 
of the wall. Thus 

(7 a, b) 

- = u ~ = - l n  30- (8) 

In the above relation, K denotes the Karmin constant, assumed to take a value of 0.4, 
u* = ( ~ , / p ) i  denotes the shear velocity and p is the fluid density. In addition, k,  denotes 
the roughness height of the bed, which can in general be taken to be some multiple of 
grain size D; that is, k,  = m2 D .  In line with the simplifying assumption of Ashida & 
Michiue (1972), the time varying fluid velocity felt by a grain as it saltates is replaced 
by a constant ‘effective’ fluid velocity evaluated at a set distance above the bed. Here 
this distance is taken to be n = m, D which defines a characteristic height above the bed 
in the bedload layer where the fluid drag on a moving grain is taken to act. Ashida & 
Michiue (1972) chose m, = m2 = 1. 

It is seen from (7) and (8) that 

U, = u,s; zb = rbs,  

where u* U b  - K ( nT)I,=flL,; 

zit, = U b  J = (a.,/p$ ŝ , (9 a) 
or rephrasing with the aid of (7), 

p lUbl ub = 

2.3. Forces 
Sediment particles can be in motion within the thin bedload layer, saltating over the 
plane of the bed illustrated in figure 6. Assuming that particle saltation has achieved 
some local statistical equilibrium, and in addition that the motion of the particle is 
averaged over many saltations, the particle can be considered to move with a steady 
mean particle velocity up .  Although up must be tangential to the bed surface it is not 
in general parallel to ub owing to the effect of gravity acting on the grain. In the present 
study, the mean motion of the particle is determined by the drag force, the immersed 
weight of the particle and the Coulomb resistive force. The particle is taken to be 
spherical. 

The drag force FD which the moving fluid exerts on the particle is given as: 

(10) 

(1 1) 
and co stands for the drag coefficient. 

The immersed weight of the particle is calculated assuming that the pressure 
distribution in the flow can be approximated as hydrostatic. The component of the 
immersed weight of the particle tangential to the plane of the bed is W,, given by 

F - - 1  D - ZPCD 4m2 Iu,I 4 3  

u, = Ub - up,  

where u, denotes the fluid velocity relative to the moving particle, given by 

W, = pRg7~$(@)~ k,, (12) 
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where R = @,/p- 1 )  denotes the submerged specific gravity of the particle, ps is the 
sediment density and g is the magnitude of the acceleration due to gravity. 

During saltations the particles collide with the bed and lose part of their momentum. 
Since the motion of a particle is characterized by a velocity averaged over many 
saltations, the momentum loss due to collision with the bed must be represented in the 
bulk by a force resisting the mean motion of the particle. This force is the dynamic 
Coulomb resistive force F,, which can be taken to be proportional to the immersed 
weight of the particle normal to the bed; 

where 

denotes a unit vector in the direction of particle motion. The coefficient of 
proportionality is the dynamic Coulomb friction factor pc. Various numerical 
experiments on saltation (e.g. Sekine & Kikkawa 1992) suggest that pc can be 
approximated as a constant. This constant furthermore does not appear to differ 
greatly from the static Coulomb friction factor ,us associated with incipient failure of 
slopes composed of granules. That is, tan-' ( pC) provides a reasonable approximation 
of the angle of repose, tan-' (,us). It is assumed for simplicity here that ,us is equal to pC. 

2.4. Force balance on a moving sediment particle 
The approximation that the particle moves with a steady mean particle velocity up  
implies that the forces acting on the particle are in equilibrium : 

FD+ W,+F, = 0. (14) 

From (14) it is clear that these forces represent forces in the bulk. Equation (14) reduces 
with the aid of (10)-(13) to the following dimensionless form; 

Here the dimensionless velocity u: = u:-vf  has been formed by dividing the 
respective dimensioned forms u,, ub, up by the velocity scale (RgD);. The parameter r,*, 
is given by the relation 

This parameter is in fact identical to the dimensionless Shields critical shear stress for 
the onset of grain motion over a horizontal bed in the Ashida-Michiue (1972) 
formulation, as illustrated below. 

2.5. The threshold of motion 
The particles protruding from the bed surface are the ones immediately exposed to the 
impelling drag of the fluid. If the fluid shear stress acting at the bed is gradually 
increased from zero, it can be observed that there is a critical shear stress value above 
which a significant number of the particles on the bed are placed in motion. This critical 
shear stress corresponds to the threshold of motion. 

At the threshold of motion, then, the force balance on a sediment particle is satisfied 
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with zero particle velocity. In the case vf = 0, the dimensionless force balance equation 
(15a) reduces to 

Here e, is a unit vector denoting the initial direction of motion 

and u& indicates the critical dimensionless near-bed fluid velocity 

A critical bed shear stress zbc and a dimensionless critical Shields stress T:, both 
pertaining to the threshold of motion, can be determined as follows: 

It is seen from (17) that the critical Shields stress is in general a vectorial quantity, 
possessing a direction parallel to the applied shear stress. Equations (9b) and (16a) 
together with (17) yield, upon reduction, the following relation for rz,  

Equation (1 8) brings out rather clearly the fact that at the same point on an inclined 
bed, the critical Shields stress for moving grains upslope is larger than that required to 
move grains downslope. This is because in the former case gravity counteracts the 
impelling shear stress, whereas in the latter case it acts to enhance it. 

Several special cascs are embedded in (18). The simplest is that of a horizontal bed, 
for which k,  = 0, lknl = 1 .  It follows that T,* = T,*~  in this case, completing the 
identification of T : ~  as the critical Shields stress on a horizontal bed. 

In the case of vanishing lateral slope, i.e. k, x s^ = w = 0, (18) reduces to 

Recall that in this case the angle of maximum bed slope p become identical to the 
streamwise slope angle a. The nonlinear dependence on streamwise angle is clearly 
apparent from the relation. A form similar to (19a) has been derived by Luque & van 
Beek (1976). 

In the case of vanishing streamwise slope, i.e. k,.s^ = tl. = 0, a similar reduction of 
(1 8) yields 

where p is identical with the transverse slope angle w .  This relation has been obtained 
previously by, for example, Lane (1953). The nonlinear dependence on transverse angle 
is again readily apparent. 

It is of value to note that in addition to the inclination of the bed, the critical shear 
stress value is a function of the properties of the sediment via the parameters p C  and 
T,*,. 
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2.6. Velocity of a moving particle 
If the fluid shear stress exceeds the critical value, that is, T* > T Z  at some point on the 
bed, the sediment particles there are set in motion. The equation of force balance (I 5 a )  
can then be solved to obtain the dimensionless particle velocity vector 

Equation (15a) must be solved under the constraint that iVp, defined by (13b),  is a unit 
vector parallel to v,, and thus 0;. This treatment for sediment particle velocity is 
essentially Lagrangian in nature. 

2.7. Bagnold condition : bedload vector 
In order to compute the vectorial volume bedload transport rate per unit width qb, it 
is necessary to determine the volume of particles participating in bedload transport per 
unit bed area, i.e. the sediment content parameter 6. In the analysis of bedload 
transport on a flat bed, Ashida & Michiue (1972) and Engelund & Fredsoe (1976) 
achieved this with the use of the Bagnold (1956) hypothesis. 

The sediment particles moving within the confines of a definable effective bedload 
layer above the bed are shown in figure 7.  As this thin layer contains moving sediment 
particles, its bulk density is greater than that of water alone, and can be taken to be 
equal to ~p where ?;, > 1.  

Consider now on the local plane of figure 7 the illustrated small volume in the form 
of an elementary parallelepiped with height 6 normal to the bed. Here 6 corresponds 
to the thickness of the bedload layer. Assuming steady motion, the force balance per 
unit bed area acting on this infinitesimal box can be expressed as 

z b  + w G  = z G  + zB, 

v; = v f  ivp. (20) 

(21 4 
where w G  = c(T-')Pgkt9 ' G  = 6 ( ~ - 1 ) ~ g l k n l ~ C i v p -  (21 b, c) 

With reference to figure 7 ,  the interpretation of the terms in (21 a)  is as follows. 
The parameter zb (= T~ j) is the impelling force of the fluid shear stress acting at the 

top of the bedload layer, which is assumed to be sufficiently thin compared to the depth 
of flow so as to allow for the neglect of momentum input to the fluid phase from gravity 
within it. The parameter wG is the component of the immersed weight of the grains in 
the bedload layer per unit bed area acting tangential to the bed. 

The forward momentum of the flow imparted to the grains via drag is transferred to 
the bed by means of oblique partially elastic collision, giving rise to a 'grain stress' zG. 
According to (21 c), it is represented as a Coulomb frictional stress, with magnitude 
equal to the coefficient pC times the normal component of the submerged weight per 
unit area of the grains. As defined by (21 a)  and (21 c), it always acts in opposition to 
the direction of motion. Finally, zB is the fluid shear stress acting at the bottom of the 
bedload layer. 

= 1 ,  it then follows from (21 a )  that zb = zB. If 
sediment is in motion, conservation of mass within the control volume of figure 7 

In the absence of sediment motion, 

requires that 

under the added constraint 
TP = T s  P s  + 7, P, 

%+Tf = 1.  
Here vS and yf are the volume fractions of sediment and water, respectively, within the 
bedload layer. Using (22) and (23), (21 a)  can be reduced to the following dimensionless 
form : 

z* + [*kt = pc [* lk,l ivp + z;. (24) 
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dn= 6 

4 Elementary 
parallelepiped 

Bedload layer 

7 
S 

i i X i  

FIGURE 7 .  Force balance on an elementary parallelepiped; see text. Subscripts 1 and 2 refer to 
vector components in 6 and 2 x ŝ  directions, respectively, e.g. wG = wG1 6+ wGz Ei x 6. 

In the above relation, 

denote the vectorial Shields stress applied to the top and bottom of the bedload layer, 
respectively, and 

,&* = where [ = L j s .  (26a, b) 

In (24), r*, lknl, k,, and pc are prescribed parameters. The unit vector iu, is 
obtained from a solution of (20). Thus (24) contains a scalar and a vectorial unknown: 
the dimensionless volume of bedload sediment per unit bed area [* and the bottom 
fluid Shields stress vector 7;. In so far as (24) represents a relation between coplanar 
vectors in the plane of the bed, it provides one less constraint than needed to solve for 
[*, and rz. 

According to the Bagnold (1956) hypothesis for bedload transport over a horizontal 
bed, when the particles are in motion the bottom fluid Shields stress should become 
equal to the corresponding critical value 7,*,. It follows in the case of (24) that a 
corresponding condition must be placed on 7; in order to allow for solution. It is also 
seen that even in the general case, the Bagnold condition must be scalar in nature in 
order to obtain proper closure. 

The simplest possible generalization to the vectorial case is the hypothesis that the 
streamwise component of the bottom fluid shear stress is equal to the critical value 
appropriate for the slope of the bed in question; that is, 

7* . ;  = 7* 
B C ,  

where T: is computed from (18). 
(27) 
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Reducing (24) with the aid of (27) the following solution is obtained for [*: 

The above relation represents an Eulerian rather than Lagrangian formulation. It is 
then possible to solve for zg as well. According to (28), the content of moving sediment 
in the bedload layer increases linearly with fluid shear stress acting at the bed. From 
(24) and (27), it is similarly seen that the component of zB perpendicular to the 
streamwise direction, i.e. z,.(fi x i), is determined solely by the corresponding 
perpendicular components of the Coulomb friction and the tangential gravity force. 

Continuity can be used to represent the vectorial volume bedload transport rate of 
bed sediment per unit normal width qb in the following form 

This relation can be rendered dimensionless by dividing through by ((RgD)i D), such 
that q: is defined equal to qb/((RgD)tD). This yields the form 

With this result the original aim of the calculation is achieved : a generalized predictor 
of the quantity qb has been specified. 

In the case of bedload transport over a horizontal bed, with the help of Ik,l = 1, 
k, = 0, i = iup and 7: = 7,*, in (8), (1 l), (1 5 )  and (28), equation (30) reduces to 

qb = c u p '  (29) 

q; = g*v;. (30) 

This corresponds to the Ashida-Michiue (1972) relation. 
At a sufficiently high slope the magnitude of the critical Shields stress r,* required to 

move a grain down the slope drops to zero as seen from (18). Likewise, it is seen from 
(28) that at the same high slope the dimensionless bedload volume content [* becomes 
infinite. Both these conditions represent the expected singularity associated with a bed 
slope angle equal to that of the angle of repose, i.e. tanp = lktl/lknl = pc. With this in 
mind, it is seen that the formulation behaves consistently at the angle of repose. 

2.8. Sample calculation 
Herein similarly to the original model of Ashida & Michiue (1972), the parameters pc, 
a and r,*, must be specified in order to implement the model. The parameters pc and 
a further collapse into the single parameter ai/pc. Ashida & Michiue (1972) 
recommended that r& be selected from a standard Shields diagram (see e.g. Raudkivi 
1976). They suggested the values p, = 0.50 and a; = 8.5, yielding a value of 17 for 
ai/p,. Ashida & Michiue (1972) obtained excellent agreement upon comparing their 
formulation to an extensive body of experimental data. 

For the present sample calculation, the following somewhat modified values are 
used: pc = 0.84, a; = 11.9 (corresponding to m, = 3.89 and m, = 1 in (8)), and 
r,*, = 0.035; these are justified in $3.4. Note that the selected value of ,uc corresponds 
to a dynamic friction angle tan-' (p,) of 40°, i.e. close to the static angle of repose of 
the sediment. 

For the purposes of numerical experimentation, the streamwise angle of inclination 
a is fixed, and the lateral angle w is allowed to change continuously from zero to the 
value at which 7: vanishes. Two cases are considered for a. In the first case tanol is 
chosen to be vanishing, and in the second case it is set equal to ip,. 
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FIGURE 8(a,b).  For caption see facing page. 

The results of the calculations are shown in figure 8. In figure 8 (a) the ratio of critical 
Shields stress on a sloping bed to that on a horizontal bed, 72/7z0, is plotted versus 
tanw. In the case tanu = 0, 7z/7z0 is seen to vary from unity at tanw = 0 to zero at 
tanw = pc. In the case tancc = $pC, 7:/7F0 takes only the value 0.21 at tanw = 0, 
dropping to 0 at a value of tanw of 0.55. A marked increase in mobility of grains is 
seen as either streamwise or transverse slope is increased. 

Figures 8 ( b t 8 ( d )  pertain to mobile-bed conditions, with the value of Shields stress 
7* taken to be twice the critical value T,*, for a flat bed. Figure 8(b) shows v:s and v&, 
figure 8(c) shows [*, and figure 8 ( d )  shows qZs and qb*, as functions of tanw. The 
subscripts s and p denote vector components in the streamwise ŝ  and lateral j 
directions, respectively, e.g. 4; = qbs s”+ q b p j .  It is evident from the plots that the model 
yields infinite transport rates, and thus fails for lateral angles higher than those yielding 
a vanishing critical Shields stress T:, for the mechanistically well-founded reason that 
the slope itself should, in fact, fail under such conditions. 

More specific verification of the new bedload formulation is provided in terms of the 
prediction of straight channel evolution presented in $ 3 .  
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FIGURE 8. (a) Critical shear stress for -, tana = 0, ---, tana = $pc. (b) Particle velocity vector v p  
(= ups 2+ v p p j )  for -, tan a = 0 and ---, tan CL = ;pc. (c) Sediment content parameter [* for -, 
tana = 0; ---, tana = Q,. ( d )  Bedload vector qb (= qbsSn+qbpj) for ~ , tana=O; ---, 
tan a = $pC. 

2.9. Further remarks 
The new formulation still leaves considerable room for improvement. Bedload 
transport models of the type of Ashida & Michiue (1972) represent approximate bulk 
treatments averaged over many saltations. Improved results would probably be 
obtained through the use of a full saltation model. To date, such models have been 
implemented only for the cases of bedload transport on a horizontal bed (e.g. Wiberg 
& Smith 1985; Sekine & Kikkawa 1992), and a bed sloping mildly in the transverse 
direction (Sekine & Parker 1992). In principle, it should be possible to extend such 
saltation models to the case of high transverse slopes. 

In the present analysis, the dynamic Coulomb friction factor ,uc for moving grains 
has been assumed to be equal to the static value ,us. In a more complete model, ,uc 
would approach ,us smoothly in the limit of vanishing motion. 

Implementations of the above formulation can also be found in Kovacs (1992) and 
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Parker & Kovacs (1992); within which a working program in the Pascal language is 
provided. 

3. Time development of straight self-formed channels 
3.1. Flow field evolution 

In open channels the mean turbulent flow of the viscous, incompressible fluid known 
as water is governed by the Reynolds and continuity equations; 

v - u  = 0. (33) 

Here t is the time, u is the ensemble mean part of the velocity field, p is the ensemble 
mean pressure, g is the acceleration due to gravity (such that 1st = g) ,  p is the fluid 
density and ,u is the dynamic viscosity of the fluid. T is the Reynolds stress tensor, the 
components of which are given by 

where u; is the ith component of the fluctuating part of the velocity field. 
For the present analysis of the flow field a Cartesian coordinate system (x’, y’, z’) is 

set up at the axis of symmetry of the straight channel such that u = (u, v, w). The 
streamwise (primary) velocity component u and the secondary flow components u and 
w are in the XI-, y’- and 2’-directions, respectively, as shown in figure 9. The streamwise 
slope of the channel is tana, where a is the angle of the x’-axis to a horizontal plane. 

The origin of the secondary flow is embedded in the structure of turbulence in 
straight channels, as discussed by e.g. Einstein & Li (1958), Gessner & Jones (1965), 
Demuren & Rodi (1984), Speziale (1987, 1991), Nexu, Nakagawa & Tominaga (1985) 
and Tamburrino (1990). It is estimated that the magnitude of straight-channel 
secondary flow is approximately 1 %  of the mean flow. Here the details of the 
secondary flow itself are not treated. 

It is also assumed that the term aulat is negligible in (32), so that the unsteadiness 
enters the flow field evolution only through the changing boundaries of the flow. The 
condition under which this quasi-steady flow approximation is valid (e.g. Kovacs 1992) 
is 

qsed/qf lozu ’. (35) 
Here qflato stands for an average water discharge per unit width and qsed denotes a 
characteristic volume bedload transport rate per unit width. In a typical channel 
studied in this paper this ratio is less than Straight channel secondary currents are 
taken to be negligible here, and the bed geometry and flow field are taken to be 
independent of x. Applying the Boussinesq (1 877) eddy-viscosity concept to (32), the 
following momentum equation for the streamwise mean velocity can be obtained, 

Here pt = ,ut(y’,z’) denotes an isotropic turbulent eddy diffusivity. The other two 
components of the Reynolds equation yield the condition that the pressure distribution 
is essentially hydrostatic, i.e. ap/az’ = pgcos a. 
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FIGURE 9. Geometry of a straight channel illustrating the connection between the (x’, y’ ,  z’)-coordinate 
system of the Reynolds equation and the (x, y ,  z)-coordinate system of the Exner equation. 

I 

FIGURE 10. Boundary conditions for the flow-field calculation. 

The boundary conditions and the flow field are illustrated in figure 10. Along the bed 
zLed( y’), denoted also by r,, the essential boundary condition is prescribed 

Along the free surface and the axis of symmetry, denoted by r,, the natural boundary 
condition corresponding to vanishing shear stress (7ys or T ~ % )  is given as 

u = ubed = 0 on r,. (37) 

r i . { (p++JVu} = 0 on r,. (38) 
Note that the bed shear stress, 7b, can be calculated from the velocity gradient at the 

(39) 

bed ; 
au 

7 b  = ri.((p+pt)vu) = (p+pt)& On rl, 
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where A is the unit vector normal to the bed. 
Consider now the time evolution of the flow field, so that at any time t it occupies 

the region Q(t), where Q(t) denotes the domain bounded by TI U r , .  On integration of 
the fluid velocity, u, over the domain, 0, the flow discharge 

A .  Kovacs and G. Parker 

is obtained. Recall that the water discharge, Q, is held constant during the experiments. 
The mass conservation expressed by (40) provides an integral condition to determine 
the location of the free-surface boundary (i.e. the centre water depth, H,(t), in the 
channel). 

3.2. Evolution of bed topography 

3.2.1. Governing equation: Exner equation 

following form in an (x, y ,  z )  Cartesian coordinate system : 
Conservation of sediment is described by the Exner equation, which has the 

where z (= z(x, y ,  t ) )  is the time-dependent vertical elevation of the bed surface above 
a horizontal reference plane, x and y are horizontal coordinates of a bed point, qscd is 
the bedload vector of sediment flux with Cartesian components 4% and qv in the x and 
y directions, respectively, and A ,  is the porosity of the bed sediment. Equation (41) is 
valid in the absence of suspended sediment since, as notcd in Q 1, it is assumed here that 
the sediment is coarse enough to preclude its suspension. The effect of suspended 
sediment has been investigated (e.g. Parker 1 9 7 8 ~ ) .  A more complex case with 
heterogeneous bed material is discussed by e.g. Ikeda, Parker & Kimura (1988). 

For the present analysis the (x, y ,  z )  coordinate system, shown in figure 9, is defined 
such that the y’-axis used in the description of the flow field coincides with the y-axis 
of the x,y, z system (i.e. y’ = y and zhed = zecos a). Thus, in this system a remains the 
angle of the streamwise slope and w (= w( y ,  t ) )  denotes the angle of the lateral slope, 
as shown in figures 9 and 11. 

Figure 11 also illustrates how the general vectorial bedload transport model is 
related to the bedload vector employed in (41). Thus 

q s e d  = (46 ri8) ’+ ( 4 b  * (42 a)  

or q, = gas cos a, qy = qbp cos 0. (42 b) 

Here qb denotes the bedload flux vector tangent to the bed surface with components 
qas and q b p  in the streamwise and lateral directions, respectively. 

For the straight channel shown in figure 9 the assumption of uniformity in the 
streamwise direction x simplifies (41) as well. The partial differential equation to solve 
for the time evolution of the cross-sectional geometry of a straight channel ( z  = z( y ,  t ) )  
is thus : 

In the following two sections the Exner equation is analysed with the help of the new 
bedload formulation and the integral form of the sediment conservation equation. 
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FIGURE 1 1. The components of the bedload vector in the Exner equation (i.e. (41)) as calculated 
with the general vectorial bedload model of 92. 

3.2.2. Hyperbolic nature of the Exner equation 

The sediment continuity equation must be classified as a partial differential equation 
in order to obtain information to prescribe the correct boundary conditions. With the 
help of the new generalized vectorial bedload formulation derived in $2, (43) becomes 

Here f, > 0 and f 2  > 0 are known functions ivhich are obtained in a straightforward 
way through the application of the new fully nonlinear bedload formulation. That is 

Equation (44) is a time dependent advection-diffusion (i.e. a hyperbolic-parabolic 
type) equation for the bed elevation in the cross-section. At the point where the bed 
shear stress 7b is equal to the critical value for sediment motion 7bc the bed elevation 
is governed by a nonlinear first-order hyperbolic equation of the form 

Since (44) becomes a nonlinear simple wave equation (i.e. (46)) at one point in the 
domain, it allows propagation of weak discontinuities there along a characteristic. It 
should also be remembered that (44) holds only on the side of the characteristic line 
where the particles are in motion (i.e. T~ > 7bc). On the other side of the characteristic 
the particles are at rest (i.e. 7b < 7bc) and the bedload flux is equal to zero; i.e. qy = 0 
and consequently az/at = 0. The point separating these two regions defines the front 
of erosion. In (46), yF  denotes the y-coordinate of the erosional front. Near the front 
of erosion the sediment transport process becomes advection dominated, while near the 
channel centre it is dominated by diffusion. 
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FIGURE 12. Moving control volume at the front of erosion. 

The mathematical theory developed for nonlinear wave equations in fluid dynamics 
can be applied to analyse the present problem. More details on this subject can be 
found (e.g. Thompson 1971 ; Whitham 1974). 

3.2.3. Erosional front velocity 
The motion of sediment across the front must satisfy the sediment continuity 

equation. In case of discontinuities in flow properties the integral forms of the 
conservation equations are utilized. For an arbitrary moving control volume the 
integral form of the sediment conservation equation is 

Here, V(t) and S(t) are the moving control volume and control surface, respectively, Ei 
is an outward unit normal from the control surface and b is the local boundary velocity 
with which the control surface moves. 

In the left half a straight river channel, shown in figure 5 ,  along the characteristic of 
the front of erosion the discontinuity in lateral slope (i.e. tan o = az/3y) propagates in 
the negative y-direction with velocity cy. To the left of the front of erosion the lateral 
slope is equal to its initial value and on the right it is larger than the initial value owing 
to the transverse motion of the sediment particles. 

To apply the discontinuity analysis for erosional fronts in general, the moving 
control volume shown in figure 12 is taken to enclose a portion of the front of erosion. 
This control volume moves with the local front velocity c. In figure 12, side 1 is the side 
where the sediment flux is zero and side 2 is the side where the sediment flux is non- 
zero. The control volume is arbitrarily thin, and its surfaces parallel to the front are 
small. Fitting a local (~,s)-coordinate system to the erosional front, the side 
dimension of the control volume is As and the half thickness of the control volume 
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is €As, where e is an arbitrarily small number. The control volume set up this way is 
used to provide a local jump condition for the front of erosion in the normal derivative 
of z. 

In applying the integral balance statement (47) to the control volume shown in figure 
12, the contribution of the edges (€As) to the surface integrals can be neglected. Taking 
q, and q2 to be the bedload fluxes and zl and z2 to be the bed elevations on the two sides 
of the control volume, i.e. on S,  and S,, respectively, (47) can be written as 

gl dt Vl+V2 z d V =  ls,( - e + z l c . A l ) d S + l s 2 (  1 - A p  - ~ ~ - A , + z , c . A ,  1 - A p  

The following form of (48) holds for a moving control volume as it sweeps through the 
unchanged initial bed configuration z ,  with velocity c : 

Here (49) expresses the rate of change of volume in the control volume owing to the 
motion of the control volume alone. 

Power series expansions around the erosional front yield 

(504 

z1 = ZO1 = z,+- (- 
an ail 1 

€As) + . . . 

€As+ ... on S,, 

Note that for erosional fronts ql is always equal to zero, as the bedload flux vanishes 
at the front of erosion. In (50), zF denotes the bed elevation at the front of erosion (1.e. 
at y = y ,  for straight channels). 

First (50) is substituted into (48) and (49), then (49) is subtracted from (48). 
Neglecting the volume integrals as they tend to zero, the jump condition for the front 
of erosion is obtained in the limit as the size of the control volume approaches zero (i.e. 
As --f 0), 
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For the case of the front of erosion as it pertains to the time evolution of straight 
river channels (5  1) simplifies to the following migration celerity of the erosional front, 

n 41 
(52) dYF - 1 aY 2 

C‘J  = CY = - d t  - ~ l-h,c?z ,I2-El1. 
The path of the front of erosion (i.e. y F  = yF(t))  defines both the characteristic of and 

the boundary for the sediment continuity equation (43). Equations (51) and (52) are 
of theoretical value. In general, neither the derivative of the sediment flux nor the 
lateral bed slope on side 2 are known without the numerical solution of (43). They 
nevertheless serve to clearly delineate how the front of erosion propagates bankward. 

3.2.4. Initial and boundary conditions 

initial condition at t = 0 is, 

which is here taken to be the initial half trapezoidal cross-sectional profile shown in 
figure 2. The essential boundary condition is prescribed at the front of erosion. Noting 
that at this point the bed elevation is equal to the initial value, the essential boundary 
condition is, 

At the axis of symmetry the natural boundary condition is given as, 

To solve equation (43) both initial and boundary conditions must be prescribed. The 

z = z( y ,  I = 0)  = zo( y) ,  (53) 

z = Z,(Y> at y = .YF(f). (54) 

aZ 
- = g y = O  at y=O.  
aY 

(55)  

3.3, Numerical prediction 

For turbulent flows of the type considered here, it is more convenient to replace the 
true boundary condition (37) by an effective wall/bed boundary condition (see e.g. 
Cebeci & Bradshaw 1988; Speziale 1991) given by the logarithmic rough law of the wall 
which is assumed to be valid in the inner layer at some distance from the wall. Thus, 
the ‘bed’ boundary condition for (36) can be specified as 

Here k, (= 2.50) is the roughness height and n is a local coordinate measured upward 
normal from the bed. nmatch is arbitrarily set equal to 0.010,, where 0, is the total flow 
depth normal to the bed. Figure 10 shows the local (n, t)-coordinate system attached 
to the wetted perimeter zbed( y) ,  denoted also by TI. Boundary conditions similar to that 
of (56) are applied by e.g. Rodi & Scheuerer (1983) for a smooth wall, and Maron et 
al. (1991) for a rough wall. 

For equation (36) the distribution of ,ut over the flow field is approximated by a 
simple algebraic closure 

as it is well known that pt has a nearly parabolic distribution with depth in wide open 
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channel flow. The derivation of this closure model (see e.g. Henderson 1966) is based 
on Prandtl’s mixing length concept. Equation (57) is valid in the outer flow region (i.e. 

several other turbulence models applied in free-surface flow problems. 
Equation (36) together with (57) and (56) provide the velocity distribution in the 

outer layer. From the outer flow solution a near-bed shear stress distribution is 
obtained by (39). The bed shear stress distribution is now extrapolated from this near- 
bed shear stress distribution on application of the condition 

outer layer). Rodi (1980) and more recently an ASCE Task Committee (1988) d‘ lSCUSS 

lr1 rb dT = pg A sin a, (58) 

where A denotes the wetted area of the cross-section. The procedure described above 
does not resolve the flow structure at the wall in the inner layer, but rather predicts the 
bed shear stress distribution from the outer flow solution. Nevertheless, it correctly 
simulates the redistribution of shear stress due to turbulent diffusion in the outer flow 
region (Parker 1978b). 

At the beginning of computation the turbulent eddy viscosity model based on (56) 
cannot be applied, as the n-lines orthogonal to the bed (see figure 10) cross each other 
inside the flow field. In this case the normal depth method 

rb = pgD, sin a (59) 
(in combination with a temporarily fixed free-surface boundary) is used as an 
approximate means to calculate the bed shear stress distribution until such time as the 
cross-sectional geometry becomes smooth enough to allow for application of (56). The 
time interval in question here is very short. 

Grains on the dry bank adjacent to the water’s edge mostly roll and slide into the 
water under the effect of gravity. Strictly speaking, qy in (43) cannot be calculated from 
the bedload formulation used here at a point that is not submerged. The bank collapse, 
illustrated in figures 1 and 5, however, requires a continuous delivery of sediment from 
the dry bank to the water margin as long as the channel continues to widen. It is 
assumed here that the motion of the particles above the water surface is similar to that 
under the water surface on a slope near the angle of repose. It is also assumed that the 
lateral slope of the dry bank is identical to that at the water margin. Particles on the 
dry bank are mobilized with the application of a small shear stress there. The 
magnitude of this shear stress is chosen just so that the lateral angle of the bank above 
the water margin coincides with that immediately below. This way, the new bedload 
relation can be used to describe bank failure in a quantitatively accurate way. 

The dynamic equilibrium state is reached asymptotically when the lateral bedload 
vanishes everywhere in the cross-section. For practical purposes the numerical 
calculation can be terminated when the lateral bedload becomes so small that further 
changes in cross-sectional shape are negligible. 

The numerical discretization of (36) and (43), presented in Kovacs (1992), applies the 
finite-element method, which provides a flexible discretization in space and the 
variable-step trapezoid rule, which incorporates the change in timescale. Kovacs (1992) 
also describes a numerical technique to track the migration of the front of erosion. 

3.4. Example : Ikeda’s run 17 and parameter sensitivity: a;, pLc and r,*, 
In this section the mathematical model developed to simulate the time development of 
a straight self-formed channel is tested against experimental results. The experiment of 
choice is Ikeda’s (1981) Run 17, because it is regarded as a representative case and 
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0.235 m 

Y' 

FIGURE 13. Initial bed profile and water depth of Ikeda's (1981) Run 17, corresponding to the 
initial conditions for the numerical experiment. 

s [-I D [m] p [kg m '1 g [m s -~ ]  R [-3 A, [-I k, [m] ,u [kg m-* s-l] 
0.00215 0.0013 1000.0 10.0 1.65 0.35 0.0032 0.001 

TABLE 1 .  Parameters used in the numerical calculation to stimulate Ikeda's (1981) Run 17 

therefore presented in detail by Tkeda (1981). Run 17 was also used by Pizzuto (1990) 
to verify his mathematical model. 

The circumstances and conditions of Ikeda's experiments have been explained in 0 1. 
Run 17 was performed in a flume with a length of 15 m and a width of 50 cm. The data 
measured at a cross-section located 1 1  m downstream of the flume inlet are compared 
against the results of the present numerical experiment. 

The initial half trapezoidal cross-section, zLed ( y ,  t = 0), and the initial water depth 
in the centre, H,(t = 0), are illustrated in figure 13. For numerical computation the 
following parameters must be prescribed: channel slope S (= tana), median grain 
diameter D, water density p, acceleration due to gravity g, submerged specific gravity 
of the sediment R = p,/p- 1 where ps denotes sediment density, bed porosity A,, 
roughness height k,, dynamic viscosity of water p. The values of these parameters are 
listed in table 1.  

There are three important parameters in sediment transport problems the values of 
which arc widely argued in the literature. The first one is a;, i.e. the ratio of the shear 
velocity to the representative fluid velocity in the bedload layer. The second one is the 
critical Shield stress 7:0 for the onset of particle motion on horizontal bed. The third 
parameter is the dynamic Coulomb friction factor ,uc, the value of which is close to that 
of the static Coulomb friction factor. In the present case the dynamic Coulomb friction 
factor is approximated with the static Coulomb friction factor (see e.g. Sekine & Parker 
1992), the tangent of the angle of repose. Different researchers apply different values 
for these parameters, e.g. Engelund & Fredsoe (1976) suggest that pc is approximately 
equal to tan27" = 0.51 and 7,*, is between 0.028 and 0.056. Ikeda (1982) uses the values 
of tan 40" and tan 45" for the Coulomb friction factor, and calculates 7:0 as a function 
of particle Reynolds number. Recently, Wiberg & Smith (1987) presented a thorough 
analysis on the calculation of the critical shear stress. They summarize the results of 
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Case 

A 
+ B  

C 
D 
E 
F 
G 

1 

@ 

11.90 
11.90 
8.953 
8.400 

11.23 
11.90 
8.400 

ruc 

0.70 
0.84 
0.70 
0.84 
0.80 
0.70 
0.84 

T,*, 

0.035 
0.035 
0.035 
0.035 
0.035 
0.040 
0.030 

a+& 

17.00 
14.17 
12.79 
10.00 
12.79 
17.00 
10.00 

TABLE 2. Parameters for the numerical experiments used to simulate Ikeda’s (1981) Run 17. 

Case HJH,, BIB, T ( Y  = O)/T,,  q,/q,, Q b3 s-’I 
Run 17 0.66 1.34 0.004 13 

A 0.72 1.45 1.312 0.0748 0.00403 
+ B  0.74 1.36 1.350 0.1084 0.00400 

C 0.73 1.43 1.332 0.0847 0.00403 
D 0.76 1.32 1.373 0.1201 0.00395 
E 0.74 1.37 1.349 0.1033 0.00397 
F 0.79 1.29 1.253 0.0583 0.00402 
G 0.69 1.53 1.474 0.1473 0.00397 

TABLE 3. Water surface width and water depth simulating Ikeda’s Run 17 with different 
parameters. The comparison is at time = 12 h. 

- ~ 

previous investigators to determine the value of the critical Shield stress for a flat bed 
as well as the value of the angle of repose for different problems. Pizzuto (1990), in his 
simulation of Ikeda’s (1981) Run 17, finds that the best agreement with the 
experimental results is obtained with the application of a value of 0.65 for ,uC and a 
value of 0.03 for T$ 

The developed numerical code (see Kovacs 1992) provides an excellent opportunity 
to investigate the effect of these parameters on the cross-sectional geometry 
characterizing the dynamic equilibrium state of a straight self-formed channel. 

To analyse how sensitive the solution is to change in the above mentioned 
parameters, the simulation of Ikeda’s Run 17 is repeated for different sets of 
parameters. A summary of the numerical experiments is given in table 2. 

In the case of Run 17 Ikeda carried out measurements for a total run time of 12 h, 
by which time a state near dynamic equilibrium had been reached. 

Table 3 shows the water surface width and the water depth at the axis of symmetry 
obtained at time = 12 h for all the cases described in table 2. It can be seen that the best 
agreement with the experimental results is obtained in Case B. This justifies why the set 
of parameters employed in Case B is chosen to demonstrate the characteristics of the 
general vectorial model in the sample calculation of $2.8. 

Analysing the results of the numerical experiments, the effects of the parameters can 
be summarized as follows. A decrease in a; causes a slight increase in depth and a slight 
decrease in width. The result of a decrease in ,ucc is a slight decrease in depth and a 
comparatively larger increase in width, which can be attributed to the fact that the 
angle of repose has become smaller. The effect of a decrease in T,*, is that the depth 
decreases and the width increases by a commensurate amount. 

In the rest of this section the results of the computations are detailed for Case B. 
Figure 14 illustrates the computed time evolution of the cross-sectional geometry, and 
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900 s 
404 s 

FIGURE 14. Time evolution of straight channel cross-section. The simulation 
is of Ikeda’s (1981) Run 17. 

figure 15 compares the non-dimensional cross-sections at various times from Ikeda’s 
experiment with those of the present computation. On figure 16 the computed time 
evolution of non-dimensional water surface width (B(t)/B(t = 0)) and non-dimensional 
centre depth (H,(t)/H,(t = 0)) are compared against the observed evolution. 

One of the cross-sections of figure 14, i.e. the one at t = 404 s, is of some interest. By 
t = 404 s the bed geometry had become smooth enough to allow for switching from the 
normal depth method, i.e. (59) to the full turbulent eddy diffusivity model for the 
computation of bed shear stress. After t = 404 s, then, it is possible to calculate the 
discharge and adjust the level of the water surface. In Ikeda’s experiment the discharge 
is 41 30 cm3 spl, while the computation keeps the discharge constant at 4000 cm3 spl for 
t > 404 s. Fortunately, the small discharge difference and the very short time required 
to obtain a sufficiently smooth cross-section for implementation of the full turbulence 
model have negligible effect on the result of the numerical model. 

The comparisons on figure 15 illustrate good agreement between the measurements 
and the computation. It can be seen that the Plexiglas wall of Ikeda’s flume is the cause 
of some discrepancy. The Plexiglas wall retards the motion of the fluid and sediment, 
resulting in a locally steeper lateral bed slope. Another feature of interest is the 
longitudinal ridges evident in the experimental profiles of figure 15, especially near the 
end of the run. These are apparently due to weak straight channel secondary currents, 
which cannot be reproduced by the present flow model. 

Figure 16 presents the time evolution of computed non-dimensional water surface 
width. Compared to the experimental results, it takes a slightly lower value for most 
of the calculation. The predicted final non-dimensional water surface width is, 
however, almost identical to that of the experiment. This situation is reversed for the 
non-dimensional centre depth shown also in figure 16, which is over-predicted during 
the entire calculation. The explanation of this difference is in the value of the roughness 
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FIGURE 15. Non-dimensional cross-sections; comparison between -, the present calculation 
and ---, Ikeda’s Run 17. 

height. During the calculation, the roughness height k, is held constant. An analysis of 
the data indicated, however, that during the physical experiment roughness height (as 
back-calculated from the measured flow and a relation for bed resistance) significantly 
decreased, even though the sediment was uniform in size. As a result of this decreased 
roughness height hydraulic resistance tended to decrease somewhat in time so that the 
straight channel in Ikeda’s experiment carried the same discharge at somewhat smaller 
water depth. The cause of the decrease of roughness height during the experiment is not 
known. 

Figure 17 illustrates the time variation of non-dimensional shear stress at the channel 
centre and the non-dimensional streamwise bedload integrated over the wetted 
perimeter. The non-dimensional shear stress (7*(t)/7,*) at the axis of symmetry 
decreases from its initial value of 1.74 to a final value of 1.35 at t = 12 h. The non- 
dimensional streamwise bedload of the cross-section (qs(t)/qz(t = 0)) also decreases 
from 1 .O to 0.11 by the end of the calculation. 
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The computation is terminated at t = 12 h in correspondence to the experiment. By 
this time the maximum value of the lateral bedload transport rate has decreased by 
three orders of magnitude from its initial value. At the same time, as can be seen in 
figure 15, the cross-section has developed a nearly flat centre bed region. As further 
noticeable changes in the geometry of the cross-section cannot be expected, it can be 
concluded that the final dynamic equilibrium profile has essentially been reached. 
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4. Conclusions 
The derivation of a vectorial bedload transport relation for non-cohesive sediment 

that is fully nonlinear in bed slope is presented. The new relation represents a 
straightforward generalization of the Ashida-Michiue (1972) relation, to which it 
reduces in the case of bedload transport over a horizontal bed. The new model contains 
two innovative features. It behaves as a continuous single-valued function of slope 
angle up to the angle of repose. In particular, the model predicts infinite transport rates 
on slopes so high that the critical Shields stress is reduced to zero. This is to be expected, 
in so far as vanishing critical Shields stress on a sloping bed corresponds to the 
condition of incipient slope failure. In addition, the model correctly predicts bedload 
transport at low Shields stress on high slopes as evidenced by its application in the 
numerical prediction of straight channel evolution. The new fully nonlinear and 
vectorial bedload formulation can be applied everywhere along the wetted perimeter of 
the cross-section, allowing for an entirely mechanistic calculation. 

The results of the simulation of Ikeda’s Run 17 compare well with the measurements. 
This means that the computation is time accurate, i.e. the timescale of the mathematical 
model, which is dictated by the bedload relation, agrees well with that observed in the 
experiment. The final cross-sectional profile obtained is characterized by a flat bed 
region near the centre of the channel, where a non-vanishing streamwise bedload is 
maintained. This flat region is smoothly connected to the adjacent curving bank. Along 
the bank the angle of the lateral slope increases up to a value close to the angle of 
repose. The applied simple algebraic turbulent closure model in the present numerical 
prediction has proved to be successful at simulating the bed shear stress distribution 
necessary in order to ultimately achieve a final dynamic equilibrium state. 

The mechanism describing bank erosion is closely related to that describing the 
migration of the front of erosion. After its formation on the slope of the bank, the front 
of erosion moves upslope rapidly until it reaches the water’s edge, and then the top of 
the adjacent dry bank. From then on its migrates outward, and asymptotically ceases 
to exist as the lateral bedload vanishes over the cross-section. The path of the front of 
erosion as well as the evolution of the channel can be determined by the simultaneous 
solution of two differential equations, those of fluid momentum conservation and the 
sediment continuity. In the present model at the front of erosion an essential boundary 
condition for the Exner equation is prescribed. This is the consequence of the 
application of the new bedload formulation and the correct classification of the Exner 
equation. 

This research was supported by the National Science Foundation (grant no. CTS 
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